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Abstract

There is a growing trend to move some of the analytics that are typically performed on cloud
applications to the access side of the network of cyber-physical systems in order to reduce
latency, improve response times and extend the infrastructure lifetime. However, this ap-
proach, known as mist computing, introduces problems associated with the broad sharing of
sensor readouts. Specifically, smart devices are deployed in constrained networks and have
limited power, making them constrained devices. Because these devices are unsupervised
and rely on batteries for power, they are inherently power-limited. Moreover, to preserve
battery life, they typically transmit data at very low rates. This situation leads to a number
of issues in the context of smart device analytics. This paper introduces these problems and
provides a solution that enables the efficient support of analytics in a network of constrained
smart devices in the context of mist computing.
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1. INTRODUCTION

Cyber-Physical Systems are key to supporting a number of initiatives ranging from Industrial Inter-
net of Things (IoT) to smart grids and home automation [1]. In these systems, human intervention
is non-existent. Interaction with the physical environment occurs through sensing devices, which
convert data into information. This information is then used by applications that convert the infor-
mation into knowledge. The applications use this knowledge to trigger actuation back at the devices.
The critical factor in this interaction is the latency between sensing and actuation. This latency, in
turn, depends on the location of the devices and the applications, as well as the technologies and the
interconnectivity used to enable their communication. Another crucial factor is network lifetime.
Since devices rely on batteries, it’s essential to preserve their power to ensure the infrastructure
remains active for as long as possible [2].

The applications that transform information into knowledge using Artificial Intelligence (Al) tech-
niques have traditionally been deployed on cloud infrastructure. However, due to latency con-
straints, this has led to a growing trend of moving applications closer to the devices. Fog computing
at edge border gateways is one initial approach. While fog computing is a viable approach, for
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many scenarios mist computing offers the best solution. In mist computing, one of the devices on
the access side of the network performs the computing that enables the conversion from information
to knowledge.

Refer to FIGURE 1, for an example of a Low Power Wide Area Network (LPWAN) where devices
take turns processing information from other devices and forwarding the processed information to
the edge device and other devices over multiple rounds. In summary, for any given round, a device
receives the aggregate sensor information from all other devices, converts the information into
actionable knowledge, and generates actuation commands that are propagated back to the relevant
devices. Depending on the scenario, the processed information is sent to the edge device, which
then broadcasts it to the broader Internet.
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Figure 1: Multi-Hop LPWAN Topology

This paper explores a well-known legacy mechanism known as Power-Efficient GAthering in Sensor
Information Systems (PEGASIS) that was developed to support routing in the context of Wireless
Sensor Networks (WSNs) [3]. PEGASIS operates within the context of the physical and link layers
of the Internet Engineering Task Force (IETF) Layered Architecture and provides an efficient way
to enable sensors to forward data to a Cluster Head (CH) that forwards the aggregated traffic to a
sink. Since CHs consume more energy, the sensors take turns becoming one, thus distributing the
energy consumption in order to maximize the overall lifetime of the WSN. This very same principle
can be adapted to support Mist based Al [4].

The goal is to recycle some of the principles introduced by PEGASIS by relying on standard phys-
ical, link, network and transport layer protocols and moving its functionality to the application
layer. Specifically, the work presented in this paper relies on devices that rely on physical and link
layers that are Long Range (LoRa) based. LoRa is an umbrella term for a full protocol stack that
provides LPWAN capabilities in devices that run on a single battery for more than ten years [5—7].
Through network layer adaptation, LoRa can be used with Internet suite protocols to support loT
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architectures. This paper introduces an algorithm that adapts PEGASIS to these [oT procotols to
dynamically support information aggregation and knowledge extraction to enable both low-latency
sensing and actuation [8].

The remainder of the paper is organized as follows: Section 2 presents a detailed discussion of the
related work. Section 3 details the fundamental technologies used to support the proposed algorithm.
Section 4 presents an algorithm that supports low-latency analytics and extends the lifetime of the
infrastructure on a Mist topology. Section 5 provides a description of the evaluation framework as
well as comparative results. Conclusions and future work are introduced in Section 6.

2. RELATED WORK

Mist computing on smart devices has been discussed in [9] and [10]. Mist computing for real-time
processing is presented in [11]. In [12], the authors introduce a mist computing scheme that relies
on LoRa. Similarly, in [13], the authors develop a mist computing application that supports gesture
recognition. Mist computing to support occupancy detection is detailed in [14]. Mist computing to
support face identification is introduced in [15]. In [15], the same authors introduce Convolutional
Neural Networks (CNNs) to support face identification. Finally, in [16] the system is upgraded
to enable face recognition on a system that relies on solar panels for energy harvesting. With the
advent of battery-less devices, the use of mist computing applications has become crucial [10]. To
this end, schemes of intermittent computing where multiple applications process sensor readouts are
discussed in [17] and [18]. The corresponding scheduling mechanisms are detailed in [19]. In [20],
the authors present an energy-aware scheduler. Similarly, in [21], a novel scheduling mechanism
that applies to energy-harvesting devices is presented. Devices that rely on super-capacitors to
enable scheduling are presented in [21]. Note that none of these works addresses the technologies
and their interaction to support the distributed mist computing algorithm presented in this paper.

3. TECHNOLOGICAL BACKGROUND

This Section reviews the main technologies used to support the proposed mechansim of mist com-
puting in multi-hop LPWAN cyber-physical systems. This includes details of PEGASIS and IoT
networking standards like LoRa, Internet Protocol version 6 over Networks of Resource-constrained
Nodes (6Lo) and Constrained Application Protocol (CoAP) [22-24].

3.1 PEGASIS

PEGASIS is a routing protocol that reduces energy consumption by sharing the responsibility of CH
duties among all devices within a network section. Additionally, PEGASIS lowers network delay
by performing data aggregation on multiple devices concurrently. These mechanisms combined
contribute to extending the overall lifespan of the network [1].

In the PEGASIS mechanism, each device is aware of the geographical location of its neighboring
devices. This allows the device to adjust its transmission power to only reach its closest neighbor.
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This power control is typically achieved using spectrum modulation techniques. PEGASIS utilizes
a chain structure formed through direct communication between devices and their immediate neigh-
bors. FIGURE 2 illustrates an example. Device 4 begins by selecting its closest neighbor, device B,
as the first link in the chain. Device B then selects its closest neighbor, device C, as the second link.
This process continues with all other devices selecting their closest neighbors to establish the chain’s
links. It’s important to note that chain formation starts with the farthest device and progresses by
sequentially adding devices to the chain. The selection process is greedy, meaning devices choose
their closest neighbor based on the strength of the received signal, which can be used to estimate
distance.
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Figure 2: PEGASIS Structure

With PEGASIS, data aggregation is not solely performed by the CH. During a PEGASIS round,
approximately half of the devices participate in some form of data aggregation. FIGURE 3 illustrates
a PEGASIS round with eight devices, labeled 4 through H, positioned 0 through 7 within the chain.
In this example, device D (initially in position 3) is the CH. The first stage involves devices in even
positions (0, 2, 4, 6) transmitting their data to their nearest neighbors in the odd positions (1, 3, 5, 7).
Following this stage, device B possesses data from device 4, device D possesses data from device
C, device F possesses data from device £ and device H possesses data from device G. Subsequently,
devices B, D, F, and H move to positions 0, 1, 2, and 3, respectively. The second stage involves
devices in the remaining even positions (0 and 2) transmitting their data to their neighbors in the odd
positions (1 and 3). After this stage, device D possesses data from device B, device H possesses data
from device F. In the final stage, only the CH (device D) and device H remain. Since the CH always
aggregates data regardless of its position, device H forwards all its data to the CH. Once the CH has
accumulated data from all other devices, it transmits it to the sink. The mechanism is designed to
ensure fair distribution of energy consumption across the network. This is achieved by rotating the
role of the CH and the data transmitting devices based on their location. For any given round with
N devices, the number of stages required is approximately the ceiling of the base-2 logarithm of N
([logy (N)1). Additionally, energy is conserved by limiting the transmission power of each device
such that it only reaches its designated uplink neighbor. This approach leads to a higher Signal-to-
Noise Ratio (SNR), which enables parallel transmissions. This parallelism maximizes the number
of simultaneous transmissions and minimizes the number of stages required.
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Figure 3: PEGASIS aggregation

3.2 IoT

IoT technologies provide the connectivity between devices and applications as well as between
devices themselves. A critical factor in qualifying a Cyber-Physical System for loT compliance
is the use of end-to-end Internet suite protocol connectivity. Specifically, LPWAN connectivity is
provided through LoRa for the physical and link layers, 6Lo for the network and transport layers,
and CoAP for the application layer. Service Discovery Domain Name Service (SD-DNS) provides
a way for devices to identify themselves without the need of any human intervention [25, 26].

3.2.1 LoRa

LoRa is a detailed set of communication protocols designed for LPWAN topologies. It allows
devices to function for over ten years on a single battery charge. As shown in FIGURE 4, the
LoRa architecture consists of three layers: physical, link, and application. Network and transport
layers are not included because LoRa focuses on direct communication between LoRa devices
and the absence of built-in IP support. Each layer is further divided into sublayers with specific
functionalities. LoRa’s modulation techniques prioritize power efficiency and enable exceptional
range. It can exceed 10 kilometers at low data rates (the exact coverage depends on physical
barriers). A single gateway can potentially cover hundreds of square kilometers. It’s important
to note that the number of supported devices and transmission speed are inversely proportional to
range. In other words, longer range comes at the cost of fewer devices and slower speeds.

LoRaWAN [27], the core technology of LoRa networks, goes beyond just connecting devices.
It establishes the entire network architecture and defines communication protocols. Unlike tra-
ditional Wireless Personal Area Networks (WPANs) that rely on complex mesh networking for
extended range, LoRaWAN utilizes a simpler approach: direct communication between devices
and gateways. This eliminates the need for data aggregation through intermediary nodes, which
helps conserve battery life and network capacity for devices with limited resources. LoRaWAN
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Figure 4: LoRa Stack

devices fall into three distinct classes (A, B, and C). These classes influence the device’s power
consumption, how it interacts with gateways, and the balance between factors like battery life,
latency, and throughput. The most suitable class depends on the specific application’s needs. For
instances where battery life is the top priority and latency is less critical, Class A might be the best
choice. On the other hand, applications requiring real-time communication might benefit more from
Class C, even though it consumes more power. Class B serves as a compromise, ideal for scenarios
where both power efficiency and timely downlink communication are important.

Internet Protocol version 6 (IPv6) adaptation for LoRa utilizes the protocol stacks depicted in
FIGURE 5. LPWAN technologies share a common layered structure. The key difference, as
expected, lies in the physical and link layers. In the context of LoRa, /Pv6 over Low-Power Wireless
Personal Area Networks (6LOWPAN), a variant of 6Lo technology, acts as the adaptation mecha-
nism. Specifically, 6(LoWPAN enables encapsulation of IPv6 and User Datagram Protocol (UDP)
to facilitate the transport of CoAP packets.
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Figure 5: CoAP over LoRa

3.2.2 6Lo

IPv6 over LoRa is not a standardized protocol, but 6LoWPAN, a related technology, can be used for
encapsulation. To support I[Pv6 datagram encapsulation, 6LoWPAN employs header compression
techniques for both IPv6 and UDP headers, along with specific fragmentation rules. 6LoWPAN
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achieves header compression through two mechanisms. Stateful IP Header Compression (IPHC)
leverages redundancy between datagrams to minimize header size. Similarly, Next Header Com-
pression (NHC) compresses the UDP header specifically. Both IPHC and NHC are small headers
containing essential fields for processing network and transport layer information. These headers
are identified by their initial bit sequences, known as dispatch values. When an IPv6 datagram needs
fragmentation, 6LOWPAN uses two different headers prepended to the datagram fragments. Initial
Fragments include a dispatch value, the entire datagram size, and a datagram tag for identifying
the fragment group. Subsequent Fragments include an additional field specifying the fragment
offset within the datagram, measured in 8-byte units. To minimize processing complexity, every
fragment carries the full datagram size. This information allows for immediate buffer allocation
upon receiving the first fragment, facilitating efficient reassembly [28].

3.2.3 CoAP

CoAP is a standardized, session-layer protocol designed specifically for efficient data exchange in
Cyber-Physical Systems. Introduced in 2014 by the IETF through RFC 7252 The Constrained Ap-
plication Protocol (CoAP) [22], CoAP is anticipated to become the dominant protocol for accessing
and managing billions of devices within the [oT landscape. Applications of CoAP span various
domains, including smart energy grids, building automation, intelligent lighting control, industrial
control systems, asset tracking, and environmental monitoring.

CoAP differs from other protocols in its use of the UDP as its transport layer. Because UDP is
connectionless, it functions well in various scenarios, including unicast, multicast, and broadcast
communication, which are frequently encountered in IoT applications. Furthermore, UDP con-
tributes to lower latency by omitting a built-in mechanism for retransmitting lost packets. While
this eliminates guaranteed delivery, it avoids potential delays that retransmissions could cause [29].

CoAP is designed to provide some of the functionalities offered by the HyperText Transfer Protocol
(HTTP) but caters to the IoT environment. In an IoT network, CoAP is typically used for accessing
data at the edge of the network, while HTTP is used for communication within the core. A gateway
acts as an intermediary, translating messages between the two protocols. This is illustrated in
FIGURE 6.

An application, often performing analytics, initiates data retrieval by sending an HTTP GET request
to obtain sensor readings. This message travels across the network using both the Transmission
Control Protocol (TCP) and IPv4, encapsulated within IEEE 802.11 frames. The gateway intercepts
the HTTP request and converts it into a CoAP GET message. This CoAP message is then transmitted
using UDP over IPv6. It’s important to note that IPv6 is adapted for low-power networks using
6LoWPAN.

Upon receiving the CoAP request, the sensor transmits a response containing the readout as a CoAP
2.05 Content message. The gateway translates this CoAP message into an HTTP 200 OK response
for the application. Since both CoAP and HTTP are stateless protocols, the message translation at
the gateway also operates in a stateless manner.
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Figure 6: CoAP vs HTTP

3.2.4 SD-DNS

Service discovery in the context of [oT, is standardized as an extension to traditional Domain Name
Service (DNS) operations supported by the Internet protocol suite [30]. The DNS infrastructure
consists of a network of DNS servers that can be globally reached by any client. In IoT architectures,
the deployment of this infrastructure is not always possible due to a number of technical issues [1].
Because of this, service discovery is carried out by means of Multicast DNS (mDNS).

In essence, mDNS leverages the existing structure and syntax of DNS messages, including Resource
Record (RR) types, operation codes, and response codes. However, mDNS defines how devices
cooperate to send and receive multicast requests and responses effectively. DNS/mDNS messages
travel over UDP on port 53. A DNS/mDNS message consists of a fixed-size header and a variable
number of questions and RRs categorized as answer records, authority records, and additional
records. Questions encompass the requested record name, type, and class, while RRs include only
the record name, type, class, but also the time-to-live and the corresponding data associated with the
record. The name identifies the resource within the device, while the type specifies the resource’s
nature. Common RR types include A and AAAA for specifying IPv4 and IPv6 addresses, PTR for
reverse lookups, SRV for service information, and TXT for configuration information. The class is
invariably set to IN for IP resource types. The TTL field indicates the number of seconds a resource
record remains valid.

mDNS establishes the foundation for exchanging RRs between devices on the same network seg-
ment, as detailed in RFC 6763 [26]. However, mDNS itself doesn’t define a process for discovering
newly added devices. This is where SD-DNS comes in. SD-DNS leverages the mDNS infrastructure
to enable automatic configuration. While SD-DNS dictates how RRs are named for service discov-
ery, it doesn’t modify the structure of DNS messages, operation and response codes, nor most DNS
protocol values. Using SD-DNS, a client can issue DNS queries specifying the service type and
domain to search for. In response, it receives a list of available devices offering that service.
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4. THE ALGORITHM

This Section introduces an algorithm that combines mainstream loT standards like LoRa, 6LoW-
PAN, CoAP and SD-DNS along with PEGASIS to maximize the network lifetime and minimize
overall latency.

4.1 Prediction Service Clustering

In IoT architectures, machine to machine communications are key. The idea is for devices to be
deployed in remote locations, and have the devices discover and associate themselves with Al
prediction services. To this end, SD-DNS is crucial.

FIGURE 7 shows the interaction between devices using SD-DNS. A device will transmit a PTR
mDNS request to find out the identity and configuration of all other devices involved with the
prediction service. They are transmitted as multicast packets that can be observed and processed
by all devices. Information related to addresses, session management, as well as geographical
coordinates, are supplied by these messages. Note that this functionality leads to the formation

of a prediction service cluster.
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Figure 7: Prediction Service Discovery

Because devices know the location of the other cluster members, a chain can be formed by starting
at the device that is farthest away from the center of the cluster (device A) as indicated in FIGURE 8.
Subsequent devices in the chain are chosen based on proximity, with device B being closer to A,
device C being closer to B, and so on, until the chain is fully formed. The algorithm is shown in
FIGURE 9. Note that after the execution of these steps, the vector S will carry the sequence all
devices in the chain.
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Figure 8: Prediction Service Clustering

4.2 Predition Information Collection

The interaction between devices is carried out in rounds of limited time duration. Devices take turns
to perform analytics such that if device A is the predictor in one round, device B will be the predictor
the following round.

FIGURE 10 shows an example of a round where device E is the predictor. All devices receive an
index based on their location in the device chain. In the first stage, even-position located devices
request readouts (by means of CoAP) to their odd-position located neighbors. This enables aggre-
gation because devices in even-position locations have their own readouts as well as the readouts of
their neighbors (which are removed from the chain). In the next stage, again, all remaining devices
receive an index based on their location in the device chain. Then even-position located devices
request readouts (by means of CoAP) to the odd-position located neighbors. This scheme continues
until only the predictor and no more than two devices are left. At this point, the predictor requests
the readouts from the remaining devices and performs analytics. If needed, the predictor forwards
the knowledge to the gateway for wider distribution. There are two exceptions to this mechanism:
(1) if a device doesn’t have a neighbor and (2) if the predictor ends up in one of stages in an odd-
position location. If a device doesn’t have a neighbor, it doesn’t perform any aggregation and skips
to the next stage. If the predictor is located in an odd position, it must perform aggregation.

FIGURE 11 shows the algorithm. After the execution of these steps, the predictor can run ana-
lytics on the aggregate information to extract knowledge and perform actuation and forward the
knowledge to the gateway. Actuation involves the predictor transmitting an actuation command to
a designated actuator.

10



https://aitai.org/ | May 2024 Rolando Herrero

Give N devices, with location z;
i€[O,N-1]
calculate the cluster center as C = %

l

Set k = argmax (|C — z,)| and set § = {k}

While the length of S is not N

l yes

Set k = argmin (|2, — 2)| for i € [0,N — 1] and i ¢ S
Insert kin .

Figure 9: Prediction Service Clustering Algorithm

S. EVALUATION RESULTS AND DISCUSSION

This Section evaluates the algorithm presented in Section 4 by taking into account two main factors:
(1) latency and (2) infrastructure lifetime. The goal is to measure the improvements of these two
parameters when compared to a scenario where mist computing is carried out with a single device
acting as predictor. In this latter case, the fixed predictor requests by means of CoAP transactions
the readouts from devices in the grid.

To compare both architectures, an experimental framework that includes a grid of N = 16 devices is
deployed. FIGURE 12a shows the legacy topology based on a fixed predictor while FIGURE 12b
shows the proposed dynamic mist computing mechanism. For both scenarios, the topology involves
a single device that acts as both actuator and sensor, including the fixed predictor that enables the
evaluation of the performance of mist computing without the use of the proposed mechanism. To
support the corresponding loT protocols relevant to this architecture, Netualizer is used. Netual-
izer is a Protocol Stack Virtualization (PSV) framework that supports the creation of networking
scenarios by enabling the emulation of a myriad of IoT protocol stacks [31, 32].

11
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Figure 10: Prediction Information Collection
To summarize, the following two test cases are consider:

» Legacy: A fixed predictor device requests 2-byte readouts from 16 devices every second.
The predictions trigger the transmission of a single 1-byte actuation command to the actuator
device.

* Proposed: In 5-minute rounds, devices take turns becoming predictors and dynamically re-
quest 2-byte readouts from 16 devices every second. The retrieval of the readouts is done in
stages intending to preserve battery life and lower overall latency, as described in Section 3.
The prediction triggers a single actuation 1-byte command that is transmitted to a device acting
as actuator.

To guarantee 32 rounds, the testing run time is set to 160 minutes. The metrics to be measured are:
(1) the average latency between the transmission of sensing requests and the actual actuation, and
(2) the average device energy consumption during the test. Although the prediction itself is not
relevant to these test cases, for the purpose of the experimental framework, the predictor is a 33-
node 577-coefficient 2-layer Artificial Neural Network that takes 16 emulated sensor temperature
readouts as input to produce a single binary output. The hidden layer has 32 nodes. The training is
based on 3200 records.

FIGURE 13 shows the actual implementation of the topology in FIGURE 12a in Netualizer /n-
tegrated Development Environment (IDE). A simple script is used to implement the two test cases
above, including the algorithm described in Section 3. Note that in order to support [oT connectivity,

12
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Figure 11: Predition Information Collection Algorithm

Netualizer introduces a wireless channel that follows the Gilbert-Elliot model shown in FIGURE 14.
The model, mimicking the behavior of wireless IoT topologies, assumes the existence of two states:
(1) good and (2) bad respectively linked to low and high network loss. In the good state, the packet
loss probability is e, while in the bad state, the packet loss probability is e 5. In addition, the model
has two additional parameters: the channel good-to-bad transition probability p and the channel bad-

13
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to-bad transition probability @. As extra simplification e and e g such that the network packet loss
and loss burstiness are controlled by the parameters p and « respectively.
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Figure 13: Topology Implementation

FIGURE 15 and FIGURE 16 show the peak energy consumption as a function of network packet
loss, for cases of low and high packet loss burstiness. Similarly, FIGURE 17 and FIGURE 18 depict
average sensing/actuation latency also as a function of network packet loss. All plots compare the
performance of the legacy and proposed mechanism. The legacy mechanism involves a centrally
located predictor that interacts with all devices and the actuator. The proposed mechanism dynam-
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ically selects the predictor and distributes the energy consumption throughout the network. Still,
the actuator is in the same location for both cases. In all cases, low and high burstiness respectively

correspond to @ = 0.3 and @ = 0.9 in the Gilbert-Elliot model. Note that the network packet loss
varies from p =0to p = 0.1.

T T
(o = 0.3) proposed

2000 T (o = 0.3) legacy

1500 ]
=
z
E
g
a -
£ 1000 B P
- e T T T T _
5
g

500 ]
0 L L I I I I | L .

0 0.01 002 0.03 0.04 005 0.06 0.07 008 0.09 0.1
packet loss probability (p)

Figure 15: Peak Energy Consumption (Low Packet Loss Burstiness)

For low packet loss burstiness, the effect of network packet loss is minimal on peak energy consump-
tion for both the proposed and the legacy mechanism. The proposed mechanism shows, on average,
around a third the peak energy consumption of the legacy mechanism. This ratio is maintained even
for high packet loss burstiness. Note that the energy consumption measured is that of the device that
consumes the most energy. This device acts as a bottleneck and limits the lifetime of the network.
Because the proposed mechanism dynamically changes the distance between sensors and actuators,
the energy associated with CoAP level retransmissions is significantly lowered. Moreover, because
the predictor is not fixed, energy consumption is not concentrated on a single device. Similarly,

15
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Figure 16: Peak Energy Consumption (High Packet Loss Burstiness)
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Figure 17: Sensing/Actuation Latency (Low Packet Loss Burstiness)

the proposed mechanism lowers the sensing/actuation latency considerably because, again, it dy-
namically changes the distance between the predictor and the devices, minimizing the effect of loss
and limiting retransmissions that typically increase latency. This is true for both levels of packet
loss burstiness, although for high packet loss burstiness the effect is much more considerable on the
legacy mechanism. On average, the latency is lowered to a fourth when relying on the proposed
mechanism.
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Figure 18: Sensing/Actuation Latency (High Packet Loss Burstiness)

6. CONCLUSION AND FUTURE WORK

Mist computing is key to supporting a myriad of [oT initiatives, including Industrial IoT and Con-
nected Health. It is particularly important in the context of remote sensing scenarios where devices
are scattered over a sensor field. IoT standards like LoRa and CoAP enable the connectivity that
additionally supports actuation. When comparing the performance of traditional fixed-location
prediction to prediction associated with the dynamic selection mechanism introduced in this paper,
the latter exhibits comparably lower latency and lower peak energy consumption. This last factor
in particular is crucial to ensuring the maximization of the network lifetime.

Going forward, the infrastructure presented in this paper can be further improved to dynamically
reduce the activity of those devices with the lowest energy levels by taking into account their real-
time battery charge. Moreover, the mechanism could reduce the activity and importance of the
devices for which their sensing readouts have little weight on the prediction.
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